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Abstract. The five different CP conserving amplitudes for the decays K → 3π are calculated using Chiral
Perturbation Theory. The calculation is made to next-to-leading order and includes full isospin breaking.
The squared amplitudes are compared with the corresponding ones in the isospin limit to estimate the
size of the isospin breaking effects. In this paper we add the radiative corrections to the earlier calculated
mu − md and local electromagnetic effects. We find corrections of order 5–10 percent.

PACS. 13.20.Eb; 12.39.Fe; 14.40.Aq; 11.30.Rd

1 Introduction

The non-perturbative nature of low-energy QCD calls for
alternative methods of calculating processes including com-
posite particles such as mesons and baryons. A method de-
scribing the interactions of the light pseudoscalar mesons
(K, π, η) is Chiral Perturbation Theory (ChPT). It was
introduced by Weinberg, Gasser and Leutwyler [1–3] and
it has been very successful. Pedagogical introductions to
ChPT can be found in [4]. The theory was later extended to
also cover the weak interactions of the pseudoscalars [5],
and the first calculation of a kaon decaying into pions
(K → 2π, 3π) appeared shortly thereafter [6]. Reviews of
other applications of ChPT to nonleptonic weak interac-
tions can be found in [7].

A recalculation in the isospin limit of K → 2π to next-
to-leading order was made in [8,9] and of K → 3π in [9,10].
In [9] also a full fit to all experimental data was made and it
was found that the decay rates and linear slopes agreed well.
However, a small discrepancy was found in the quadratic
slopes and that is part of the motivation for this further
investigation of the decay K → 3π in ChPT.

The discrepancies found can have several different ori-
gins. It could be an experimental problem or it could have
a theoretical origin. In the latter case the corrections to
the amplitude calculated in [9] are threefold: strong isospin
breaking, electromagnetic (EM) isospin breaking or higher
order corrections. These effects have been studied in many
papers for the K → 2π decays, references can be traced
back from [11]. For K → 3π less work has been done.
In [12] the strong isospin and local electromagnetic correc-
tions were investigated and it was found that the inclusion
of those led to changes of a few percent in the amplitudes.
The local electromagnetic part was also calculated in [10],
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in full agreement with our result after corrections of some
misprints in [10].

In this paper we add also the radiative corrections,
i.e. the nonlocal electromagnetic isospin breaking. The full
(first order) isospin breaking amplitude to next-to-leading
chiral order is thus calculated, and we will try to estimate
the effect of this in the amplitudes. A new full fit, including
also new experimental data [13,14], has to be done to answer
the question whether isospin breaking removes the problem
of fitting the quadratic slopes. This, together with a study
of models for the higher order coefficients, we plan to do
in an upcoming paper.

Other recent results on K → 3π decays can be found
in [15,16]. In [15] Nicola Cabibbo discusses the possibility
of determining the a0 − a2 pion scattering length from the
threshold effects of K+ → π0π0π+. He gives an approxi-
mate theoretical result with very few unknown parameters.
We have a possibly better theoretical description of these
effects but it includes more unknown parameters. In [16]
an attempt was made to calculate the virtual photon cor-
rections to the K+ → π0π0π+ decay. Our result disagrees
with the result presented there.

The outline of this paper is as follows. The next section
describes isospin breaking inmore detail. In Sect. 3 the basis
of ChPT, the Chiral Lagrangians, are discussed. Section 4
specifies the decays and describes the relevant kinematics.
The divergences appearing when including photons are
discussed in Sect. 5. In Sect. 6 the analytical results are
discussed, Sect. 7 contains the numerical results and the
last section contains the conclusions.

2 Isospin breaking

Isospin symmetry is the symmetry under exchange of up-
and down-quarks. Obviously this symmetry is only true in
the approximation that mu = md and electromagnetism is
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neglected, i.e. in the isospin limit. Calculations are often
performed in the isospin limit since this is simpler and gives
a good first estimate of the result.

However, to get a precise result one has to include
isospin breaking, i.e. the effects from mu �= md and elec-
tromagnetism. Effects coming from mu �= md we refer to as
strong isospin breaking and include mixing between π0 and
η. This mixing leads to changes in the formulas for both
the physical masses of π0 and η as well as the amplitude
for any process involving either of the two. For a detailed
discussion see [17].

The other source is electromagnetic isospin breaking,
coming from the fact that the up- and the down-quarks are
charged, which implies different interactions with photons.
This part can be further divided in local electromagnetic
isospin breaking and explicit photon contributions (radia-
tive corrections). The former are described by adding new
Lagrangians at each order and the latter by introducing
new diagrams including photons.

Our first calculation of K → 3π [9] was done in the
isospin limit. In the next paper, [12], we included strong
and local isospin breaking (there collectively referred to as
strong isospin breaking) and we now present the calculation
including all isospin breaking effects.

3 The ChPT lagrangians

The basis of our ChPT calculation is the various Chiral
Lagrangians. They can be divided in different orders. The
order parameters in the perturbation series are p and m,
the momenta and mass of the pseudoscalars. Including
isospin breaking also e, the electron charge, and the mass
difference, mu − md, are used as order parameters. All
of these are independent expansion parameters. We work
to leading order in mu − md and e2 but next-to-leading
order in p2 and m2. For simplicity we call in the remainder
terms of order p2, m2, e2 and mu − md leading order, and
terms of order p4 ,p2 m2, m4, p2 e2, m2 e2, p2(mu − md)
and m2(mu − md) next-to-leading order.

3.1 Leading order

The leading order Chiral Lagrangian is usually divided in
three parts

L2 = LS2 + LW2 + LE2, (1)

where LS2 refers to the strong ∆S = 0 part, LW2 the weak
∆S = ±1 part, and LE2 the strong-electromagnetic and
weak-electromagnetic parts combined. For the strong part
we have [2]

LS2 =
F 2

0

4
〈uµuµ + χ+〉 (2)

Here 〈A〉 stands for the flavour trace of the matrix A, and
F0 is the pion decay constant in the chiral limit. We define
the matrices uµ, u and χ± as

uµ = iu† DµU u† = u†
µ , u2 = U ,

χ± = u†χu† ± uχ†u ,
(3)

where the special unitary matrix U contains the Goldstone
boson fields

U = exp

(
i
√

2
F0

M

)
,

M =




1√
2
π3 + 1√

6
η8 π+ K+

π− −1√
2
π3 + 1√

6
η8 K0

K− K0 −2√
6
η8


 .

(4)

The formalism we use is the external field method of [2],
and to include photons we set

χ = 2B0


mu

md

ms




and DµU = ∂µU − ie QAµU − ie UQAµ,

(5)

where Aµ is the photon field and

Q =


2/3

−1/3
−1/3


 . (6)

We diagonalize the quadratic terms in (2) by a rotation

π0 = π3 cos ε + η8 sin ε

η = −π3 sin ε + η8 cos ε , (7)

where the lowest order mixing angle ε satisfies

tan(2ε) =
√

3
md − mu

2 ms − mu − md
. (8)

The weak part of the Lagrangian has the form [18]

LW2 = C F 4
0

× [G8〈∆32uµuµ〉 + G′
8〈∆32χ+〉

+ G27t
ij,kl 〈∆ijuµ〉〈∆klu

µ〉]
+ h.c. . (9)

The tensor tij,kl has as nonzero components

t21,13 = t13,21 =
1
3

t22,23 = t23,22 = − 1
6

;

t23,33 = t33,23 = − 1
6

t23,11 = t11,23 =
1
3

, (10)

and the matrix ∆ij is defined as

∆ij ≡ uλiju
† , (λij)ab ≡ δia δjb . (11)

The coefficient C is defined such that in the chiral and
large Nc limits G8 = G27 = 1,

C = − 3
5

GF√
2

Vud V ∗
us = −1.06 · 10−6 GeV−2 . (12)



J. Bijnens, F. Borg: Isospin breaking in K → 3π decays II: radiative corrections 349

Finally, the remaining electromagnetic part, relevant for
this calculation, looks like (see e.g. [19])

LE2 = e2F 4
0 Z〈QLQR〉 + e2F 4

0 〈ΥQR〉 (13)

where the weak-electromagnetic term is characterized by
a constant GE (gewkG8 in [19]),

Υ = GE F 2
0 ∆32 + h.c. (14)

and
QL = uQu† , QR = u†Qu . (15)

3.2 Next-to-leading order

The fact that ChPT is a non-renormalizable theory means
that new terms have to be added at each order to com-
pensate for the loop-divergences. This means that the La-
grangians increase in size for every new order and the
number of free parameters rises as well. At next-to-leading
order the Lagrangian is split in four parts which, in obvious
notation, are

L4 = LS4 + LW4 + LS2E2 + LW2E2(G8) . (16)

Here the notation (G8) indicates that here only the dom-
inant G8-part is included in the Lagrangian and therefore
in the calculation.

These Lagrangians are quite large and we choose not to
write them explicitly here since they can be found in many
places [2, 5, 19–23]. For a list of all the pieces relevant for
this specific calculation see [12]. Note however that four
terms producing photon interactions should be added to
LW4 in [12]. The two new terms in the octet part are

N14 i 〈∆32 {fµν
+ , uµuν}〉 + N15 i 〈∆32 uµfµν

+ uν 〉 (17)

and in the 27 part

D13 i tij,kl〈∆ij uµ〉〈∆kl [uν , fµν
+ ]〉

+ D15 i tij,kl〈∆ij uµuν〉〈∆kl fµν
+ 〉 , (18)

where

fµν
+ = uFµνu† + u†Fµνu ,

Fµν = e Q (∂µAν − ∂νAµ) .
(19)

3.2.1 Ultraviolet divergences

The process K → 3π receives higher-order contributions
from diagrams that contain loops. The study of these dia-
grams is complicated by the fact that they need to be de-
fined precisely. The loop-diagrams involve an integration
over the undetermined loop-momentum q, and the inte-
grals are divergent in the q → ∞ ultraviolet region. These
ultraviolet divergences are canceled by replacing the co-
efficients in the next-to-leading order Lagrangians by the
renormalized coefficients and a subtraction part, see [9,12]
and references therein. The divergences can be used as a
check on the calculation and all our infinities (except the
ones left since the G27-part in LW2E2 is not known) cancel
as they should.

3.2.2 Loop integrals

The prescription we use for the loop integrals can be found
in many places, e.g., [24]. The only one needed in addition
to the ones given there is the one-loop three point function

C(m2
1, m

2
2, m

3
3, p

2
1, p

2
2, p

2
3)

=
1
i

∫
ddp

(2π)d

× 1
(p2 − m2

1) ((p − p1)2 − m2
2) ((p − p3)2 − m2

3)
, (20)

where p3 = p1 + p2. For its numerical evaluation we use
the program FF [25]. This program also deals with possible
infrared divergences consistently.

4 Kinematics

There are five different CP-conserving decays of the type
K → 3π (K− decays are not treated separately since they
are counterparts to the K+ decays):

KL(k) → π0(p1) π0(p2) π0(p3) , [AL
000] ,

KL(k) → π+(p1) π−(p2) π0(p3) , [AL
+−0] ,

KS(k) → π+(p1) π−(p2) π0(p3) , [AS
+−0] ,

K+(k) → π0(p1) π0(p2) π+(p3) , [A00+] ,

K+(k) → π+(p1) π+(p2) π−(p3) , [A++−] , (21)

where we have indicated the four-momentum defined for
each particle and the symbol used for the amplitude.

The kinematics is treated using

s1 = (k − p1)
2

, s2 = (k − p2)
2

, s3 = (k − p3)
2

.
(22)

The amplitudes are expanded in terms of the Dalitz plot
variables x and y defined as

y =
s3 − s0

m2
π+

, x =
s2 − s1

m2
π+

, s0 =
1
3

(s1 + s2 + s3) .

(23)
The amplitude for KL → π0π0π0 is symmetric under
the interchange of all three final state particles and the
one for KS → π+π−π0 is antisymmetric under the in-
terchange of π+ and π− because of CP. The amplitudes
for KL → π+π−π0, K+ → π+π+π− and K+ → π0π0π+

are symmetric under the interchange of the first two pions
because of CP or Bose-symmetry.

5 Infrared divergences

In addition to the ultraviolet divergences which are re-
moved by renormalization, diagrams including photons in
the loops contain infrared (IR) divergences. These infinities
come from the q → 0 end of the loop-momentum integrals.
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Fig. 1. Bremsstrahlung, the emission
of an extra final-state photon

They are canceled by including also the Bremsstrahlung
diagram, where a real photon is radiated off one of the
charged mesons, see Fig. 1. It is only the sum of the vir-
tual loop corrections and the real Bremsstrahlung which
is physically significant and thus needs to be well defined.
We regulate the IR divergence in both the virtual photon
loops and the real emission with a photon mass mγ and
keep only the singular terms plus those that do not vanish
in the limit mγ → 0. We include the real Bremsstrahlung
for photon energies up to a cut-off ω and treat it in the
soft photon approximation.

The exact form of the amplitude squared for the brems-
strahlung diagram depends on which specific amplitude
that is being calculated. For K+(k) → π0(p1)π0(p2)π+(p3)
it can be written in the soft photon limit (see e.g. [26])

|A|2BS = |A|2LO e2
∫

d3q

(2π)3
1
2q

∑
λ=0,1

[
k · ε(λ)

q · k
− p3 · ε(λ)

q · p3

]2
,

(24)
where |A|LO is the lowest order isospin limit amplitude.
The number of terms inside the parentheses is the number
of charged particles in the process and the sign of those
terms depends both on the charge of the radiating particle
and on whether it is incoming or outgoing. Writing out the
square and using

∑
λ=0,1 ε

(λ)
µ ε

(λ)
ν = −gµν , you get

|A|2BS = −|A|2LO e2
∫

d3q

(2π)3
1
2q

(25)

×
[

k2

(q · k)2
+

p2
3

(q · p3)2
− 2 p3 · k

(q · k)(q · p3)

]
.

To solve the first integral term, place the vector k along
the z-axis, i.e.

k = (k0, 0, 0, kz) and (k · q)2 = (k0q0 − kzqz)2 . (26)

Changing to polar coordinates that part of the integral
now looks like

−|A|2LO e2 m2
K

8π2

∫
dq d(cos θ)

q

(k0Eγ − kzq cos θ)2
, (27)

where k2 = m2
K , q0 = Eγ and qz = q cos θ have been

used. Solving the d(cos θ) part is now straightforward and
leads to

−|A|2LO e2 m2
K

8π2

∫
dq

1
kz

(
1

k0Eγ − kzq
− 1

k0Eγ + kzq

)
,

(28)
Putting the two terms on a common denominator and
changing variable to Eγ leads to

−|A|2LO e2 m2
K

4π2

∫ ω

mγ

dEγ
Eγ

E2
γ(k0)2 − (E2

γ − m2
γ)(kz)2

,

(29)

where ω is the photon energy above which the detector
identifies it as a real external photon. We are only interested
in the result in the limit mγ → 0, so it’s enough to consider

−|A|2LO e2 m2
K

4π2

∫ ω

mγ

dEγ
1

m2
KEγ

, (30)

which gives the result

−|A|2LO

e2

8π2 log
ω2

m2
γ

. (31)

In a similar way one gets the result for the mixed term∫
d3q

(2π)3
1
2q

[
2

p3 · k

(q · k)(q · p3)

]
= − xs

4π2

s3 − m2
K − m2

π

mKmπ(1 − x2
s)

× log xs log
ω2

m2
γ

(32)

≡ IIR

(
m2

K , m2
π, s3

)
,

where

xs =

√
1 − 4mKmπ

/(
s̄3 − (mK − mπ)2

)
− 1√

1 − 4mKmπ

/(
s̄3 − (mK − mπ)2

)
+ 1

. (33)

In order to obtain the correct imaginary part we use the
iε-prescription, which means s̄3 = s3 + iε.

For the other amplitudes the calculations are similar
and the resulting bremsstrahlung amplitudes are

|AL
000|2BS = 0 , (34)

|AL
+−0|2BS = −|AL

+−0|2LO

e2

4π2

×
[
log

ω2

m2
γ

− IIR

(
m2

π, m2
π, s3

)]
, (35)

|AS
+−0|2BS = −|AS

+−0|2LO

e2

4π2

×
[
log

ω2

m2
γ

− IIR

(
m2

π, m2
π, s3

)]
, (36)

|A00+|2BS = −|A00+|2LO

e2

4π2

×
[
log

ω2

m2
γ

− IIR

(
m2

π, m2
K , s3

)]
, (37)

|A++−|2BS = −|A++−|2LO

e2

4π2

×
[
2 log

ω2

m2
γ

(38)

− IIR

(
m2

π, m2
K , s1

)− IIR

(
m2

π, m2
K , s2

)
+ IIR

(
m2

π, m2
K , s3

)− IIR

(
m2

π, m2
π, s1

)
− IIR

(
m2

π, m2
π, s2

)
+ IIR

(
m2

π, m2
π, s3

)]
.
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Fig. 2. The tree level diagrams for K → 3π. A filled square is
a weak vertex, a filled circle a strong vertex, a straight line a
pseudoscalar meson and a wiggly line a photon

When using the above, the divergences from the explicit
photon loops cancel exactly.

A similar problem shows up in the definition of the
decay constants since we normalize the lowest order with
Fπ+ and FK+ . Our prescription for the decay constants is
described in App. A.

6 Analytical results

6.1 Lowest order

The four diagrams that could contribute to lowest order
can be seen in Fig. 2.

However, the two diagrams including photons turn out
to give zero. This is obviously so for K+ → π+π0π0 and
KL → π0π0π0 since the γπ0π0 vertex vanishes as a conse-
quence of charge conjugation.

The reason why it vanishes for the other decays is some-
what more subtle and is the same as why the lowest order
result for K → π�+�− vanishes [27]. When doing a si-
multaneous diagonalization of the covariant kinetic and
mass terms quadratic in the pseudoscalar fields, including
those of the weak lagrangian LW2, p2-terms of the form
∂µK∂µπ are absent and all weak vertices involve at least
three pseudoscalar fields. This result should not change as
compared to our calculation where the weak Lagrangian
was not included in the diagonalization. Thus in our case,
the two diagrams on the right in Fig. 2 will together give
zero contribution.

Thismeans that the lowest order result in the full isospin
case is the same as when just including strong and local
EM isospin breaking. This result we published before, the
full expressions can be found in [12].

6.2 Next-to-leading order

There are 51 additional diagrams contributing to next-to-
leading order. They can be divided in three different classes
and examples will be shown of each class. It should be noted
that the argument in the previous subsection is not valid
at this order. There now exist Kπγ vertices. The reason
for this is that one can not diagonalize simultaneously all
terms with two pseudoscalar fields when going to next-to-
leading order.

The first class of diagrams are the 13 which do not
include explicit photons. They are the ones used in our
earlier papers [9, 12] and a complete list of them can be
found there. Some examples are shown in Fig. 3.

Fig. 3. Examples of diagrams of next-to-leading order with no
photons. An open square is a vertex from LW4 or LW2E2, an
open circle a vertex from LS4 or LS2E2, a filled square a vertex
from LW2 or LE2 (∆S = 1) and a filled circle a vertex from
LS2 or LE2 (∆S = 0)

Fig. 4. Examples of diagrams with photons in the loops. A
filled square is a weak vertex, a filled circle a strong vertex, a
straight line a pseudoscalar meson and a wiggly line a photon

Fig. 5. Examples of diagrams with photon propagators. An
open square is a vertex from LW4 or LW2E2, an open circle
a vertex from LS4 or LS2E2, a filled square a vertex from
LW2 or LE2 (∆S = 1) and a filled circle a vertex from LS2 or
LE2 (∆S = 0). A straight line is a pseudoscalar meson and a
wiggly line a photon

The second class of diagrams are the ones with a photon
running in a loop. There are 18 of these and some exam-
ples can be found in Fig. 4. Their evaluation is the main
new result of this paper. They are also responsible for the
infrared divergences discussed in Sect. 5. The first diagram
is an example where the photon is the only particle in the
loop, a photon tadpole diagram. These vanish in dimen-
sional regularization when only singular and nonzero terms
in the limit mγ → 0 are kept.

The last class of diagrams is the ones with tree level
photon propagators, 20 in total. They are photon reducible,
i.e. if we cut the photon line the diagram falls apart. They
are infrared finite and some examples can be seen in Fig. 5.
It turns out that for realistic values of the input parameters
this class of diagrams give a negligible contribution to all
K → 3π processes.

We work to first order in isospin breaking, i.e. as soon
as e2 is present we set mu = md, mπ+ = mπ0 = mπ and
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Table 1. The various input values used

G8 5.45 Lr
1 0.38 · 10−3 K̃1 0

G27 0.392 Lr
2 1.59 · 10−3 K̃2/G8 5.19 · 10−2

GE −0.4 Lr
3 −2.91 · 10−3 K̃3/G8 3.77 · 10−3

Lr
4 0 K̃4 0

sin ε 1.19 · 10−2 Lr
5 1.46 · 10−3 K̃5/G27 −4.25 · 10−2

Z 0.805 Lr
6 0 K̃6/G27 −1.66 · 10−1

µ 0.77 GeV Lr
7 −0.49 · 10−3 K̃7/G27 1.20 · 10−1

Fπ 0.0924 GeV Lr
8 1.0 · 10−3 K̃8 . . . K̃11 0

FK 0.113 GeV Lr
9 7.0 · 10−3 K̃12 . . . K̃30 0

N14 −10.4 · 10−3 K1 . . . K11 0 D13 0
N15 5.95 · 10−3 D15 0

mK+ = mK0 = mK . Even then, the resulting amplitudes
at next-to-leading order are rather long, and it does not
seem very useful to present them here explicitly. However,
the full expressions for the amplitudes are available on
request from the authors or can be downloaded [28]. It
should be noted that the amplitude for KL → π0π0π0

was given in [12]. It was stated that it was the full isospin
breaking amplitude since no explicit photon diagrams can
contribute to this process. This is not completely true, the
amplitude will change indirectly through the definition of
Fπ+ and FK+ , see App. A.

The next-to-leading order amplitudes can in princi-
ple include all the low-energy coefficients (LECs) from
LW4, LS4, LW2E2 and LS2E2. The coefficients from the
strong and electromagnetic part of the Lagrangian are
treated as input, which leaves G8, G27, Nr

1 , . . . , Nr
13, Dr

1,
Dr

2, Dr
4, . . . , D

r
7, Dr

26, . . . , D
r
31 and Zr

1 , . . . , Zr
14 as undeter-

mined. In total 41 unknown parameters. However, all of
these do not appear independently, i.e. they multiply the
same type of term, e.g. m4

K or e2m2
π. It turns out, as dis-

cussed in [12], that there are 30 independent combinations,
denoted by K̃1 . . . K̃30. For the 11 combinations already ap-
pearing in the isospin limit see [9,12] and the 19 additional
ones for the isospin breaking case can be be found in [12].
In addition to the 30 combinations found in [12], four new
coefficients show up when including photons: Nr

14, N
r
15, D

r
13

and Dr
15. These all come from the third class of diagrams

where a tree level photon is present. The four coupling
constants show up in precisely the same combinations in
K → π�+�− and can thus be determined experimentally
in other decays. We therefore treat them as input.

7 Numerical results

7.1 Experimental data and fit

A full isospin limit fit was made in [9] taking into account
all data published before May 2002. One of the motivations
for this continued investigation of isospin breaking effects is
to see whether isospin violation can solve the discrepancies
in the quadratic slope parameters found there. A new full
fit will be done in an upcoming paper. The data from
ISTRA+ [13] and KLOE [14], which appeared after [9],

will then also be taken into account. We do not present a
newfit in this paper since estimates of the new combinations
of constants should be done before attempting a full fit.

7.2 Inputs

The input values we use are presented in Table 1.

7.2.1 Strong and electromagnetic input

There are different ways to treat the masses, especially in
the isospin limit case. In [9] the masses used in the phase
space were obtained from the physical masses occurring in
the decays. However in the amplitudes the physical mass of
the kaon involved in the process was used and the pion mass
was given by m2

π = 1
3

∑
i=1,3 m2

πi with i = 1, 2, 3 being the
three pions participating in the reaction. This allowed for
the correct kinematical relation s1+s2+s3 = m2

K +3m2
π to

be satisfied while having the isospin limit in the amplitude
but the physical masses in the phase space. The results
in [9] were obtained with the physical mass for the eta.
Results with the Gell-Mann-Okubo (GMO) relation for
the eta mass in the loops gave small changes within the
general errors given in [9].

In the decays here, we work to first order in isospin
breaking. We have rewritten explicit factors of mu − md

in terms of sin ε according to

mu − md = − 2√
3

(2 ms − mu − md) sin ε . (39)

In general we use the physical masses of pions and kaons
in the loops but as soon as a factor of sin ε or e2 is present
we use a common kaon and a common pion mass. This
simplifies the analytical formulas enormously. The kaon
mass chosen is the mass from the kaon in the decay and
the pion mass used is 3m2

π =
∑

i m2
πi with i = 1, 2, 3 the

three pions in the final state, i.e. the mass we used in the
isospin limit case. For the eta mass we use in general the
GMO mass in the loops but with isospin violation included,

m2
η =

2
3

(m2
K+ + m2

K0 − m2
π+) +

1
3

m2
π0 . (40)
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The possible lowest order contributions from the eta mass
have been removed from the amplitudes using the corre-
sponding next-to-leading order relation as described in [12].

The strong LECs Lr
1 to Lr

8 from LS4 as well as sin ε
come from the one-loop fit in [17].

The constant Z from LE2 we estimate via

Z =
1

2 F 2
π e2 (m2

π+ − m2
π0) , (41)

which corresponds to the value in Table 1. The higher order
coefficients of LE4, K1 . . . K11, are rather unknown. Some
rough estimates exist but we put them to zero here.

The IR divergences are cancelled by adding the soft-
photon Bremsstrahlung. We have used a 10 MeV cut-off in
energy for this and used the same cut-off in the definition
of Fπ+ and FK+ .

The subtraction scale µ is chosen to be 0.77 GeV.

7.2.2 Weak inputs

The coefficients contributing in the isospin limit from LW2
and LW4 are taken from the fit in [9]. The values of G8,
G27 in Table 1 are taken from [9] as well. We use as a
reasonable estimate for GE the value presented in [29].

No knowledge exists of the values of K̃12 . . . K̃30, so
they are set equal to zero at µ = 0.77 GeV. Tests were also
made assigning order of magnitude estimates to them. This
imparted changes in the isospin breaking corrections similar
in size to those of the loop contributions.

7.2.3 Input relevant for the photon reducible diagrams

The two new constants D13 and D15 are set to zero since no
knowledge exist of their values. Note that in order to con-
tribute at all, they have to get values orders of magnitude
larger than the expected size.

The two other new constants, N14 and N15, can be
determined from K → πl+l− decays. For these decays, the
branching ratios can be expressed as [27]

BR(K+ → π+e+e−) = (3.15 − 21.1w+ + 36.1w2
+) · 10−8

×|C G8/(9 · 10−6 · GeV−2)|2
BR(KS → π0e+e−) = (3.07 − 18.7wS + 28.4w2

S) · 10−10

×|C G8/(9 · 10−6 · GeV−2)|2 (42)

Using the measured central values [30]

BR(K+ → π+e+e−) = 2.88 · 10−7 ,

BR(KS → π0e+e−) = 3.0 · 10−9
(43)

one gets the results

w
(1)
+ = 1.69 , w

(2)
+ = −1.10

and w
(1)
S = 1.93 , w

(2)
S = −1.28 .

(44)

These constants, w+ and wS , can then be written in
terms of both strong and weak low-energy constants [27],

w+ =
4
3

(4π)2[Nr
14(µ) − Nr

15(µ) + 3Lr
9(µ)] − 1

3
ln

mKmπ

µ2 ,

wS =
2
3

(4π)2[2Nr
14(µ) + Nr

15(µ)] − 1
3

ln
m2

K

µ2 , (45)

and from the knowledge of Lr
9(µ) [31], one gets the values

listed in Table 1 for one choice of signs in (44).
Note that the influence of this class of diagrams is not

visible in the figures nor in the results shown in the tables
for any of the possible signs chosen in (44). The magnitude
of these constants needs to be increased significantly in
order to have a visible impact on our numerical results.

7.3 Results with and without isospin breaking

The results we will present here is a comparison between the
squared amplitudes and the decay rates in the isospin limit
and including first order isospin breaking. The full squared
amplitudes over the decay region is a 3-D plot with the two
different cases plotted over phasespace. This is, however,
very difficult to read, and instead we will present compar-
isons along three slices of these 3-Dplots as explainedbelow.
We also present the corrections for the Dalitz plot param-
eters.

In Table 2 we present the values of the amplitudes
squared in the center of the Dalitz plot, i.e. for x = y = 0.
We show the results in the isospin limit from [9], with
the strong and local electromagnetic isospin breaking in-
cluded [12] and with full isospin breaking included.

Similarly, in Table 3 we present the integrated decay
rates in the isospin conserving case [9], the one with strong
and local electromagnetic isospin breaking included [12]
and with all isospin breaking effects included. There are
here in principle problems with an infinite correction when
a charged two pion system is at rest. The effects of the
electromagnetic interaction can then become very large
from terms containing logarithms of the pion velocity. This
is where the Coulomb interaction dominates and it should
then really be resumed to all orders. In order to avoid this
problem, we have introduced the cut-off EC . It means that
we only integrate the phase space over the part where

√
si ≥ 2mπ + EC . (46)

Table 2. Comparison of the central values of the amplitudes
squared in the isospin conserving case (Iso), including strong and
local electromagnetic (Strong) and full (Full) isospin breaking

Centralvalue
Iso [9] Strong [12] Full

KL → π0π0π0 6.74 · 10−12 6.97 · 10−12 7.04 · 10−12

KL → π+π−π0 7.46 · 10−13 7.66 · 10−13 7.88 · 10−13

KS → π+π−π0 0 0 0
K+ → π0π0π+ 0.93 · 10−13 1.01 · 10−12 1.03 · 10−12

K+ → π+π+π− 3.72 · 10−12 4.00 · 10−12 4.14 · 10−12
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Table 3. Comparison of the decay rates in the isospin conserving case
(Iso), including strong and local electromagnetic (Strong) and full (Full)
isospin breaking. The Coulomb cut-off used, EC , is explained in the text

Decay Rate
Iso [9] Strong Full EC [MeV]

KL → π0π0π0 2.65 · 10−18 2.74 · 10−18 2.77 · 10−18

KL → π+π−π0 1.63 · 10−18 1.67 · 10−18 1.72 · 10−18

KS → π+π−π0 3.1 · 10−21 3.2 · 10−21 3.3 · 10−21

K+ → π0π0π+ 9.11 · 10−19 9.84 · 10−19 1.00 · 10−18

K+ → π+π+π− 2.97 · 10−18 3.19 · 10−18 – 0
2.95 · 10−18 3.17 · 10−18 3.28 · 10−18 1
2.91 · 10−18 3.13 · 10−18 3.24 · 10−18 2
2.72 · 10−18 2.93 · 10−18 3.03 · 10−18 5

Due to the way we have chosen the pion mass, the Coulomb
problem only shows up for the decay K+ → π+π+π− where
the systems of two charged pions can be at rest or at very
low relative velocity at the edges of phase space. The places
where this happens are indicated by the large dots in Fig. 6.
The choice of the pion masses in KL,S → π+π−π0 is such
that the Coulomb threshold is slightly outside the physical
phasespace. It turns out that in this case the part of the
correction that includes the Coulomb singularity is rather
small. We have, therefore, not included any corrections for
it in the results presented.

In Fig. 6 we also show the phase space boundaries for
the five different decays and the three curves along which
we will show results for the squared amplitudes with and
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 1
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 3

-1.5 -1 -0.5  0  0.5  1  1.5
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y

000

+-0

00+

++-

Fig. 6. The phase space boundaries for the five different de-
cays and the three curves along which we will compare the
squared amplitudes. The points where two charged pions have
low relative velocity for K+ → π+π+π− are indicated by the
large dots

without isospin breaking. The three curves are x = 0,
y = 0 and x =

√
3 y. In Fig. 7 to Fig. 11 we then plot the

five different squared amplitudes along these curves as a

function of r, where r = ±
√

y2 + x2

3 and the sign is chosen
according to

r =




y, x = 0
x/

√
3, y = 0

y
√

2, x = y
√

3 .

(47)

Note that for all but AS
+−0 the squared amplitudes are

normalized to their value at the center of the Dalitz plot.
A comparison of the central values themselves is shown in
Table 2.

We also calculate the changes in the Dalitz plot distri-
bution parameters. These are defined by∣∣∣∣A(s1, s2, s3)

A(s0, s0, s0)

∣∣∣∣
2

= 1 + gy + hy2 + kx2 . (48)

The isospin breaking corrections to these parameters are
given in Table 4. The amplitude for KS → π+π−π0 is
parametrized via

AS
+−0 = γSx − ξSxy . (49)

Table 4. Comparison of the Dalitz plot distribution parameters
in the isospin conserving case (Iso), including strong and local
electromagnetic (Strong) and full (Full) isospin breaking

Decay Quantity Iso [9] Strong Full
KL → π0π0π0 h −0.0072 −0.0068 −0.0068
KL → π+π−π0 g 0.673 0.683 0.677

h 0.085 0.089 0.088
k 0.0055 0.0057 0.0057

KS → π+π−π0 γS 3.4 · 10−8 3.4 · 10−8 3.5 · 10−8

ξS −0.2 · 10−8 −0.2 · 10−8 −0.2 · 10−8

K+ → π0π0π+ g 0.635 0.619 0.619
h 0.074 0.071 0.071

K+ → π+π+π− g −0.215 −0.211 −0.201
h 0.012 0.012 0.008
k −0.0052 −0.0050 −0.0037
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We now discuss the results in somewhat more detail.
In general the results are of a size as can be expected from
this type of isospin breaking. They are of order a few, up to
11% in the amplitudes squared outside the Coulomb region.
The isospin breaking corrections tend to increase all decay
rates somewhat and this will in a fit be compensated by
small changes in the values of the K̃i compared to the
results of [9]. The number of significant digits quoted in
Table 2 is higher than the expected precision of our results,
but the trend and the general size of the change compared
to the isospin conserving results are stable with respect to
variations in dealing with the eta mass (physical or GMO).

For KL → π0π0π0 the central value of the amplitude
squared increases by about 4.5%. In this case we have
because of the symmetry of the final state that g = 0 and
k = h/3. The quadratic slope decreases by about 5% but
the total variation over the Dalitz plot is small so the total
decay rate increases by about 4.5% as well. This decay is
the one which has most variation in the amplitude when
changing how one deals with the eta mass. The extreme
case we have found was that this effect completely cancelled
the change from isospin violation, but the relative change
due to isospin breaking remained similar. Note the scale
in Fig. 7 when viewing the result. The changes compared
to [12] are entirely due to the photon loop corrections to
Fπ+ and FK+ .

In Fig. 7 one can also clearly see the thresholds induced
by the difference between m2

π+ and m2
π0 introduced when

isospin invariance is broken. These thresholds correspond
to a new process being allowed where two of the neutral
pions are produced through an intermediate on shell state
with one positive and one negative pion.

The squared amplitude KL → π+π−π0 increases by
about 5.5% with very little variation with the eta mass
treatment. The decay rate increases by the same amount.
The changes in the Dalitz plot slopes are rather small as can
be judged from Fig. 8. The marginal differences compared
to g quoted in [9] are due to a slightly different fitting
procedure to the amplitudes squared.

For the decay KS → π+π−π0 the amplitude in the
center of theDalitz plot vanishes because of the symmetries.
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Fig. 7. Comparison of KL → π0π0π0 with and without
isospin breaking
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Fig. 8. Comparison of KL → π+π−π0 with and without
isospin breaking
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Fig. 9. Comparison of KS → π+π−π0 with and without
isospin breaking

The amplitude and the slopes increase by about 3% as can
be seen in Fig. 9 and the tables.

The decay K+ → π0π0π+ has a large increase. The
squared amplitude in the center changes by about 11%.
The linear slopes decrease somewhat leading to an increase
of about 10% to the total decay rate when compared with
the isospin conserved case. This is shown in Fig. 10.

The amplitude for K+ → π0π0π+ is also calculated
in [16]. Our results do not agree with the numerics presented
there. We find an increase in the amplitude while there
a decrease is found. In [16] a different choice of lowest
order was made than here and in [9,12]. After taking that
difference into account, we still disagree significantly with
the numerical results of [16].

The decay K+ → π+π+π− has a change of about 11%
upwards in the center of the Dalitz plot. The slopes decrease
somewhat. The decay rate can only be compared when the
Coulomb region is excluded from the comparison but the
total change is also about 11%.

The conclusions above do not change qualitatively when
we give the Kr

i a value of about 0.001 and the new isospin
breaking K̃i a value relative to G8 and G27 of 0.01. How-
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Fig. 11. Comparison of K+ → π+π+π− with and without
isospin breaking

ever the changes induced by these values are numerically
significant. They can be of the order of 10%, largest for
KL → π0π0π0.

It should be noted that the mentioned changes are with
the values of K̃i determined from the isospin conserving
fit in [9]. A new determination including isospin breaking
effects is planned in an upcoming paper.

8 Conclusions

We have calculated the K → 3π amplitudes to next-to-
leading order (p4, p2 m2, m4, p2 e2) in Chiral Perturbation
Theory. A similar calculation was done in [9] in the isospin
limit, and in [12] including strong isospin breaking, but we
have now included full isospin breaking. The motivations
for this are both because it is interesting in general to see
the importance of isospin breaking in this process, but also
to investigate whether isospin violation will improve the fit
to experimental data. Discrepancies between data and the

quadratic slopes from ChPT were found in [9], and isospin
breaking may be the cause of this.

We have estimated the effects of the isospin breaking
by comparing the squared amplitudes with and without
isospin violation. The effect seems to be at 5–10% per-
cent level in the amplitudes squared. To investigate if this
removes the discrepancies found in [9] a new full fit has
to be done, also including the new data [13,14] published
after [9]. This is work in progress and will be presented in
the future paper Isospin Breaking in K → 3π Decays III.
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A The decay constants Fπ+ and FK+

We have chosen to normalize our lowest order contribution
with F 4

0 /(F 3
π+FK+). Fπ+ and FK+ are the pion and kaon

decay constants respectively. Including isospin breaking
they are determined from the diagrams in Fig. 12 and the
resulting expressions are

Fπ+ =

F0

{
1

+
1

F 2
0

[
F 2

0 e2

×
(

4/3 Kr
1 + 4/3 Kr

2 + 10/9 Kr
5 + 10/9 Kr

6 + 2 Kr
12

+ 2
∂

∂q2 B(m2
γ , m2

π, m2
π) m2

π − B1(m2
γ , m2

π, m2
π)

− 2
∂

∂q2 B1(m2
γ , m2

π, m2
π) m2

π

)

+ Lr
4

(
16 m2

π

sin ε√
3

− 16 m2
K

sin ε√
3

+ 4 m2
π0 + 8 m2

K0

)

+ Lr
5 (4 m2

π0) + 1/2 A(m2
π+) + 1/2 A(m2

π0)

+ 1/4 A(m2
K+) + 1/4 A(m2

K0)
]}

(A.1)

Fig. 12. Diagrams for the decay constants. An open square
is a vertex from LW4 or LW2E2, a filled square a vertex from
LW2 or LE2 (∆S = 1) and a filled circle a vertex from LS2 or
LE2 (∆S = 0). A straight line is a pseudoscalar meson and a
wiggly line a photon
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and

FK+ =

F0

{
1

+
1

F 2
0

[
F 2

0 e2

×
(

4/3 Kr
1 + 4/3 Kr

2 + 10/9 Kr
5 + 10/9 Kr

6 + 2 Kr
12

+ 2
∂

∂q2 B(m2
γ , m2

K , m2
K) m2

K − B1(m2
γ , m2

K , m2
K)

− 2
∂

∂q2 B1(m2
γ , m2

K , m2
K) m2

K

)

+ Lr
4

(
16 m2

π

sin ε√
3

− 16 m2
K

sin ε√
3

+ 4 m2
π0 + 8 m2

K0

)

+ Lr
5

(
16 m2

π

sin ε√
3

− 16 m2
K

sin ε√
3

+ 4 m2
K0

)

+ 3/4
sin ε√

3
A(m2

π) + 1/4 A(m2
π+) + 1/8 A(m2

π0)

+ 1/2 A(m2
K+) + 1/4 A(m2

K0)

+ A(m2
η)
(

3/8 − 3/4
sin ε√

3

)]}
. (A.2)

These formulas agree with known results [3, 33].
The above formulas are infrared divergent when mγ →

0, and the standard way to deal with this is the same as in
the amplitudes, i.e. adding a bremsstrahlung diagram. We
have chosen to just add a term including a cut-off scale for
the bremsstrahlung photon,

−|A|LO
e2

4π2 log
ω2

F

m2
γ

, (A.3)

which cancels the dependence on the photon mass and
therefore removes the divergence. The scale ωF is set
to 10 MeV.
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